
PAYMENTS

CONTEXT
ARCHITECTURE

CAPABILITIES
ROADMAP

White Paper on

Page 1

WHITE PAPER

INDEX

02

03

04

09

10

11

INTRODUCTION

CONTEXT

ARCHITECTURE
PROCESSING ENGINE
PLATFORM
METRICS
LOGGING
DISCOVERY SERVICE & CONFIGURATION SERVER
MONITORING
FRONTEND
AUTENTICATION SERVICE
TECHNOLOGIES
DATA PERSISTENCY
CHANNEL INTEGRATION

CAPABILITIES

ROADMAP

APPENDIX
PERSISTENCY
APACHE CASSANDRA
DATA ACCESSIBILITY
APACHE IGNITE
PROCESSING ENGINE
JAVA 8
PIVOTAL SPRING FRAMEWORK
RESOURCE MANAGEMENT
APACHE MESOS

Page 3

WHITE PAPER

Page 2

CONTEXT

Technology constantly outpaces itself
year after year, with new advances
being presented incessantly, and
changing the way people and enter-
prises do things. It continuously
grows in its presence everywhere,
effectively breeding a dependency
like never before. People don’t go
anywhere without their smartphones,
they operate simultaneously on their
tablets and laptops, while at the same
time enterprises rely on complex infra-
structures to operate and effectively
manage their core business. Little can
be achieved without technology, and
any company without a strong digital
presence is doomed to oblivion.
With so much technology in place, so
many different users and such diversity
in services and offers, the amount of
data and complexity of its management,
from a provider perspective, is ever
more obvious. The evolution has been
marked by moving from monolithic
applications, into modular ones; from
there, onto discrete domain-specific
systems interconnected by complex
integration architectures.
Businesses now support their flexible,
adaptive, innovative and modern
business models, especially on the
pressure they put into operating costs.

From the start-up company to the
large enterprise, the key to prosperity
seems to be able to accommodate
the markets ‘mood-swings’, endure the
constant shifts and to compete being
as light-weighted as possible.
In order to accomplish every tangible
market expectation, companies must
be able to change, transform and
scale their supporting activities and
infrastructures, all for the sake of the
customer experience win-win place at
the end of track.
Every aspect or dimension supporting
the business-model, especially the
IT infrastructure, needs to be flexible,
scalable, agile, efficient and have as
little implementation time as possible.
Companies seek adaptability, modu-
larity and the ability to account for
future changes. This proven fact has
been creating the need for integration
solutions, which can automate and
scale performance in their core busi-
ness support activities, diminishing
the huge and lengthily headache of
tying all the loose ends together with
every innovation and shifting from the
core legacy systems to automation and
scalability with very little time to do it.

INTRODUCTION

As new advancements arise at a rapid
rate, led by the transformation triggered
by smartphones and tablets, new tech-
nologies including mobile wallets and
on-demand apps, a new era of digital
assistants, and enhanced connectivity
technologies - such as NFC and Blue-
tooth – are becoming an intrinsic part
of the way consumers interact with
the products and services they rely on
every day.
Mobile payments, on-demand
consumption, the rise of ‘near-field’
technologies and the sharing economy,
are currently helping to shape the way
we use and pay in our ordinary lives.
And with this status quo, customers
expect a wide variety of options when
they’re about to pay, with little or no
friction at all.
Prominent brands and e-commerce
platforms have evangelized customers
to expect a no-friction payment expe-
rience, storing their consumer infor-
mation, such as credit card details and
other similar ways of collecting money,
as a means of speeding up the whole
purchase experience and guaranteeing
continuity upon each visit. With Stored
Credentials as the preferred payment
method, this results in fierce competi-
tion between fintech startups, credit

card providers and other payment
handlers to target every piece of the
demographic tissue – especially the
younger, lucrative and more digitally-
apt crowd – and grab their payment
method preference for continuous use.
Almost every player in every market
feels the need to track their payment
channels to the consumer’s needs
and habits, to ensure the kind of
friction-free and real-time payment
experience the market has been
growing accustomed to. In the ‘big
data’ era, success in this area is widely
measured by the ability to capture
quick counter-consumption payments,
best suited to the customer’s location –
physical store, mobile, desktop, tablet
or wearable gadget. The compelling
experience that, for instance, mobile
wallets are able to provide in terms of
speed and reward – the gamification of
buying – seem to be an important key
to drive bigger consumption, speed up
collection, and generate a more well-
rounded satisfaction, as the payment
act – or the ‘checking-out’ – is starting
to be a seamless part of the shopping
and consumption experience.

Page 5

WHITE PAPER

Page 4

information).
As responses are processed, the status
of the Payment Order evolves. Each
response is treated individually, and
does not necessarily imply its amount
matches the original one, meaning
partial payments for any given Payment
Order are automatically handled, along
with partial reversals triggered by the
end client.
Additionally, as the financial transac-
tions can be handled by Payment
Orders, there is embedded control to
make sure the same transaction isn’t

requested twice while in progress,
further enforcing validations to avoid
erroneous scenarios.
Associated with Payment Order is the
notion of validity, which further enables
the customer to manage how it desires
its financial transactions to be handled.
As an example, it is possible to define
a given Payment Order must be paid
within the first 5 attempts of payment,
otherwise, it is automatically cancelled.

The three core concepts behind

1. PROCESSING ENGINE
 incorporates a Processing

Engine, that further enables complex
task management. The Processing
Engine is a package of micro-services
targeted at executing flows of tasks
across a variety of platforms. Each
flow can be fully configured, allowing
sequential or parallel tasks to be
executed. It features three main classes
of components: Receptor, Orchestrator
and Executor.

1.1 RECEPTOR
The Receptor component is the main
entry point of any request, enabling its
initial processing, which includes tech-
nical validations as well as configu-
rable business rules to be applied to
ascertain the coherence of informa-
tion, as well as derive which flow is to
be executed based on the input data.
Should all steps be valid, an order is
placed in the queuing system and a
reply is returned to the calling plat-
form. On the other hand, should it fail,
the calling platform is informed of the

failure for its correction and eventual
resubmission.
A Receptor can provide several services
(endpoints) to be invoked, along with
multiple versions of each endpoint,
which are dynamically generated and
exposed based on user configuration.
It further supports multiple instances
running over various machines, each
with its own set of services for finer
granularity and control.

1.2 ORCHESTRATOR
For successfully accepted orders,
the Orchestrator component over-
sees the control of the flow of tasks
to be executed, from start to end
– successful or in error. It tracks the
evolution of each task by scheduling
its work within the available Executor
components, based on their capabili-
ties and the required work to be done.
The approach selected was of a state-
less, decentralized service, being able
to split the management of each flow
among all running instances.

 Environment

Persistence

Logging/Metrics Platform

Receptor Environment

InMemory Data Grid Message Broker

Receptor

Orchestrator Environment

Orchestrator

Client Execution Environment

Executor

Figure 2. Processing Engine Overview

ARCHITECTURE

 was designed, from its early
stages, with the future in mind.
Following old paths made little sense
in a world marked by constant evolu-
tion, and with the growing certainty
that today’s solution will most likely be
outdated soon. With such concerns in
focus, different ways of achieving the
set objectives were considered, where
scalability, fault-tolerance, reliability,
resilience and configurability were
key. What is true today will soon be
outdated and outpaced. The current
acceptable amount of data will soon be

surpassed. More processing power, in
different geographies, through public
clouds or private data centers, must
be supported, with all the challenges
therein considered and handled.
From a functional perspective,
incorporates the notion of Payment
Orders, which enable a client to simplify
the management of financial transac-
tions. For instance, when requesting
for a payment to be done, the client
creates a Payment Order within the
platform, indicating the amount but
also the channels on which it can be
paid (along with any relevant additional

MB WAY Handler

LOGICAL LAYER

Other HandlerStorage

Grid
PayPal Handler

CHANNEL INTEGRATION LAYER
CLIENT

INFRASTRUCTURE COMM. LAYER

Rest

SOAP

File

...

DATA LAYER

Figure 1. Architecture Overview

OTHER

Page 7

WHITE PAPER

Page 6

mation to be displayed, instead of a
static screen showing predefined data.
It also incorporates configurable
profiles and roles, associated with each
user, further defining what each user
can view, create, modify or remove,
based on organizational requirements.
The Frontend is based on Angular JS
technology, enabling an up to date
look & feel, as well as device-respon-
sive interactivity. Both the information
displayed and the look & feel of the
Frontend is specific, on a customer by
customer basis. The rationale is that
it makes the most sense to adapt the
Frontend to the corporate image and
way of working, not the other way
around.
This way, it’ll be possible to, for instance,
monitor the volume of processed trans-
actions daily, per channel, and display
that information on the Frontend for
the users with appropriate privileges
to view.

2.6 AUTHENTICATION SERVICE
To comply with the need of security
and validated service access,
embeds an authentication service
enabling the services to be used only
by properly authenticated users.
With this feature, all requests made to
the exposed services must be authen-

ticated through a central authentica-
tion server – as provided by –,
ensuring only the services each user
has granted policies are accessed.
This server implements the OAuth 2.0
protocol and can authenticate users in
a relational database or a LDAP server,
depending on the customer needs.
This capability greatly empowers
the organization in safeguarding the
access to its financial transactions,
ensuring only valid and authenticated
users can interact with it.

2.7 TECHNOLOGIES
The entire solution is based on the
technology stack presented below
in more detail. In any case, given the
architectural decisions made earlier
on, it becomes fully possible to opt
for specific solutions using different
technologies, if certain key integra-
tion aspects are met. As an example,
it is possible to deploy one Executor
component implemented over C/C++,
or Microsoft C#, or even Python. The
choice in the persistency stack can be
replaced by other NoSQL solutions
such as MongoDB, or even more tradi-
tional RDBMS’s like MySQL, Postgres
or Oracle.
This capability is particularly important
due to the variety of channels existing.

It is possible to expect certain providers
to prefer technologies with stricter
protocols, focused on bit-level perfor-
mance, as well as others preferring
light-weight approaches completely
differing from one another. Legacy
solutions are not impaired nor do they
impair newer ones, when integration
with is concerned.
As referred previously, this capability
can be used for the client to use its
own implementation of channels that
have proprietary logic, which is not to
be incorporated directly into the plat-
form but benefits from using it.
Across the entire solution, the choice
of technology has been focused on its
adequacy (for its given set of respon-
sibilities), as well as its proven track-
record, industry wide-spread adoption,
reliable enterprise-grade support and
evolution roadmap.
With the growing adoption of cloud-
based approaches instead of on
premise, certain facets of architecture,
design and underlying implementation
were considered to assure the solu-
tion was prepared without the need of
specific customization. By addressing
these concerns early, the selection of
technologies was further refined, where
only the ones with appropriate levels of
compliance were left as eligible.

Figure 3. Packaging for multiple deployments

Cloud Environment

Hybrid Cloud

Packaging Private Data Center

All interactions between components
occur via messaging. The supporting
broker technology ensures persistency
of messages, high availability, confir-
mation upon delivery (at least once
delivery), fault tolerance, message-
batching among many others. This
approach allows the engine to scale
vertically, by making use of multiple
cores per machine, and scale horizon-
tally, launching multiple instances in a
machine cluster.

1.3 EXECUTOR
The Executor component is respon-
sible for the actual running of the
work tasks within each work flow. This
component is designed for self-scaling
within its available resources, as well
as deployable in multiple instances
for load management and balancing.
Each component is dedicated to a
work domain, such as RDBMS interac-
tions, file system integrations, or other
more specialized features dependent
on customer requirements and
constraints.
Imagining a scenario where a customer
is already operating with a limited
set of batch operations, where the
financial transactions are carried out
by daily sending and receiving files to
and from the banks (or other financial
institutions). The customer identifies
as crucial to implement a real-time
channel, such as PayPal. The new
channel is deployed through a dedi-
cated set of components, which don’t
affect the existing operation. New
flows are configured, new functionality
is enabled, but the platform continues
executing.

2. PLATFORM
2.1 METRICS
All components are implemented
to produce execution metrics and
store them in a centralized repository
where the system performance can be

measured and monitored. With these
metrics, it is possible to know how long
an order takes to be processed, as well
as how long each component takes
to execute the required operation.
With these capabilities, it is possible
to detect anomalies in components’
instances by monitoring the execution
times of each in system, along with
other relevant information neces-
sary for scheduling of performance
enhancing actions, bottleneck detec-
tion or scaling decisions.
Metrics are enriched with contextual
data. It is possible to know the host
where the component is running, the
number of available cores and memory,
which real-time group it belongs, along
with additional relevant information.
As an example, a customer starts
noticing the processing of real-time
requests is often hitting timeouts,
causing requests to have to be repro-
cessed or even end-client dissatis-
faction. By analysing the metrics, it
is possible to identify a machine has
been modified and is now running at
over-capacity instead of the planned
30%. Actions can then be carried out to
perform a different approach of scaling,
enabling the issues to be solved.

2.2 LOGGING
In distributed deployments, compo-
nent instances will be spread across
several machines of a cluster. Each
instance will produce logs that must
be stored and grouped with the logs
of all system components to allow
analysis of the system behaviour. All
components of are prepared
to write application logs to a file – on
the local machine –, and to send a
logging message with additional data,
allowing users to correlate all logs for
a specific order or workflow execution.
This enables a clearer big picture of
the system.
These logs are centralized in an Elas-

ticSearch index with a predefined
schema. It is possible to search logs by
an order id, a correlation id or by log
message. Logs are published asyn-
chronously to the broker improving
system performance.

2.3 DISCOVERY SERVICE
& CONFIGURATION SERVER
Components’ instances can be started
on any available host of the cluster,
manually or automatically based on
workload. To be able to manage and
control all instances, a Service Registry
and a Configuration Server was imple-
mented. All components retrieve their
configuration from the central configu-
ration server, and must create a record
– with their IP address and HTTP port
– in the Service Registry. Each service
instance is responsible for registering
itself with the Service Registry during
start-up and unregistering on shut-
down.

2.4 MONITORING
Components’ instances are continu-
ously monitored using health check
endpoints provided by each of them,
and by metrics’ analysis. With it, it
is possible to act, to start and stop
instances, maintaining the desired
Service Level and the effective use of
resources of the running environment.
This capability is tied with the Metrics
functionality to continuously monitor
and react to changes in the infra-struc-
ture, and plan actions to mitigate the
impacts.

2.5 FRONTEND
 presents a unified GUI that

enables common operations to be
performed over the Platform, such as
diagnosis, tracing, log validation and
status checks.
The approach chosen allows each
customer to have dedicated screens
or views, representing relevant infor-

Page 9

WHITE PAPER

Page 8

CAPABILITIES

A summarized list of what does
provide:

• Process files for offline batch
processing, received from financial
institutions

• Generates files for offline batch
processing, sent to financial
institutions

• Support real-time payment
requesting and respective
cancellation

• Enable real-time payment
confirmation and rejection

• Support synchronous and
asynchronous communication
models, for real-time

• Generate reporting based on
financial transactions processed

• Integrate new payment channels
(different protocols)

• Incorporate proprietary or private
transactional channels of the
customer

• Support General Ledger reporting

• Support insert-on-missing or report-
on-missing reconciliation tactics
(real-time with batch processing)

• Configurable tasks and flows
• Cross-platform self, up and out

scaling
• Fault Tolerant design through

component clustering
• No central point of failure
• Logging with performance metrics
• Component health checks and

monitoring
• Data grid for high performance,

ACID data access and manipulation
• Clustered, resilient and distributed

data persistency
• Multiple data persistency solution

support (RDBMS, NoSQL)
• Inter-component communication

through messaging for at-least-
once delivery assurance

3. DATA PERSISTENCY
It is immediately recognized that data
must be kept safely, consistently and
securely, to be used. Given the scope
of the solution involves handling finan-
cial transactions and interacting with
internal platforms for reconciliations of
capital, it is paramount that no informa-
tion is ever lost. Data must be tracked
and safe from unwanted manipulation.
It must also scale easily, and have as
little constraints in its management as
possible. Because of the diversity in
concerns, there is no direct solution or
clear approach on which technology is
best, to ensure persistency. Standard
RDBMS’s are tried-and-true platforms,
that provide a multitude of capabilities
most people take for granted but have
shortcomings in either cost, scalability
or performance. More recent NoSQL
solutions have less wide-spread adop-
tion in large enterprises, but commonly
are inherently scalable and performant,
at a fraction of the cost. And then there
are ways closer to actual physical
storage, like HDFS, ZFS, and others.
To handle persistency, has
employed a ‘choose any’ approach. In
other words, whichever is best suited for
a customer, or a specific domain inside
a customer, the solution will support it,
including mixed strategies with segre-
gated data between platforms.

To understand better the following
concepts, it is relevant to understand
how is designed, particularly on
how its components interact.
is packaged as a set of micro-ser-
vices, each responsible for a certain
domain of actions. With this approach,
it becomes possible for new compo-
nents to be added or old ones removed
without jeopardizing the consistency of
the whole solution.
This componentization is achieved,
as referred, by the modelling of the
components as stand-alone micro-ser-
vices – or application –, capable of
interaction with each other, with several
integration services providing functio-
nality for this end. The Configuration
Service and the Discovery Service
allows the components to register and
configure themselves, enabling their
interaction with the full platform when
they become ‘plugged in’.

4. CHANNEL INTEGRATION
The previous strategy is an important
step for the quick and easy integration
of multiple channels. Following these
guidelines of platform integration, new
micro-services targeted for specific
channels’ logic and management, can
be incorporated without disrupting the
existing platform or requiring major
changes to it.

It is also a key enabler for standard busi-
ness and technical scenarios, that are
more and more frequent. A customer
can have its own tailored channels or
want to perform a quick incursion into
new markets with different regulations,
or even embrace changes in its own
operating markets – new technologies,
new laws, new business opportuni-
ties. For any of these scenarios, the
micro-service building process can
range from a simple configuration of
existing micro-services that feature a
wide array of capabilities suitable for
the new specific purpose, to enhance-
ments of already existing services, or
ultimately custom implementation of
dedicated logic with new micro-services.
The platform copes with any of these
approaches with limited disturbance.
Customers can grow and adapt without
fearing loss of service. It is also assured
that client-specific integrations, for
private or proprietary protocols, can
be interfaced with the whole solution
without leaving the client’s control. It
is possible, as an example, for a client
to have its own implementation of a
channel integrated with the
solution. It leverages the capabilities
of the platform, without publishing
or relinquishing control of its private
implementation.

Page 11

WHITE PAPER

Page 10

APPENDIX
Some technical insights
on

PERSISTENCY

APACHE CASSANDRA
The choice of Apache Cassandra for
storage was based on its multitude of
capabilities, particularly:
• Decentralized nature, avoiding

single points of failure or network-
based bottlenecks

• Fault Tolerance, through its data
replication across nodes and data
centres, together with the capability
of failed node replacement without
downtime

• Scalability, by use of ‘nearly
infinite’ multiple nodes to support
processing and storage growth

• Elasticity, by relying on its nodes
increase for read/write throughput

• Professional support and proven
use on global enterprises (CERN,
eBay, GitHub, Apple, Netflix to
name a few)

The framework relies on
Apache Cassandra solution to store its
information across its components. The
use is indirect, however, as the layer
of accessibility is performed via Data
Fabric Apache Ignite.
It is the responsibility of this layer to

effectively communicate with Apache
Cassandra, for effective storage (write)
and reading of data.
Regardless of this choice, as stated,
the solution is designed to interact with
multiple Data Persistency solutions,
based on specific customer require-
ments.

DATA ACCESSIBILITY

APACHE IGNITE
Apache Ignite is an In-memory Data
Fabric that provides high-performance
data, compute and service grids. It
supports fully ACID-compliant distri-
buted transactions, ensuring consis-
tency across all data and supporting
standard SQL syntax to query the
objects stored in the data grid.
Accessing this data grid is possible
through multiple programming
languages.

Another relevant feature is the
advanced clustering capabilities
enabling scalability, fault-tolerance and
high-performance requirements.

Currently, uses the data grid as
a layer to interact with the persistency

ROADMAP

Fully aware the product of today
isn’t the product of tomorrow since
the needs and technology of today
will surely be replaced in the future,
the solution has a constantly
evolving roadmap of features. These
new capabilities will come from the
new experience gathered from our
customers, as well as their insight,
advice and suggestions.
There is no aim in having customer-
specific branches, stopped in time over

each deployment, but assure a recur-
ring evolution targeted at providing
new and better ways to support tech-
nology and business.
By constantly investigating on what is
happening and about to happen, as
well as converging experiences across
markets, customers and mindsets, we
envision the path of improvement to be
made available. Partnership with our
clients is key in the forming of this vision
and the definition of the roadmap.

Figure 4. Roadmap approach

Continuous Improvement Feature Build Deployment & Evaluation

Business Requirement Legal Constraint New Capability Technology Evolution

Competitors

Industries

Customers

Markets

Trends

Products

Test

Plan

Build

Design

On PremiseCloud

Sprint

Page 12

RESOURCE MANAGEMENT

APACHE MESOS
 is a naturally distributed system.

Any of its components and respective
instances can be executed on multiple
machines, thus contributing to better
performance through horizontal scala-
bility, as well as avoiding central points
of failure, by relying on clustering and
fault-tolerance techniques.
The implementation is designed to
use not only common virtualization of
machines but also containerization
approaches, such as Docker or Kuber-
netes.
The distribution and resource manage-
ment are thus a concern that has been
properly addressed using Apache
Mesos, which features centralized
handling for deployment and scaling
of components in any sort of
installation, from on-premise to cloud
or a mix of both.

Av. Dom João II, nº 44 C, 2.2 • 1990–095 Lisboa, Portugal
T: +351 919531710 • mail@cmas-systems.com • www.cmas-systems.com

solution, with read-through or write-
through approaches. The effective
writing is executed in an asynchronous
manner, to expedite performance.

PROCESSING ENGINE

JAVA 8
 is built using the latest version

of Java language. It enables to take
advantage of all new features and
performance improvements intro-
duced with version 8.
Java has been selected as the refe-
rence language given its wide industry
adoption, the simplicity to deploy in
multiple platforms, its code portability.
Java has a widespread number of
open source plugins and frame-
works, an extremely active developer
community, and an extensive evolution
roadmap as well as a support group.

PIVOTAL SPRING
FRAMEWORK
Pivotal Spring Framework is an open
source framework that supports the
development of Java applications,
by providing help with infrastructure
needs and supplying a consistent
programming model over different
technologies.
It has been widely used throughout the
Java development industry, as an alter-
native to the Enterprise Java Beans
model.
Pivotal, and particularly its Spring
team, are always planning the future
and driving the framework to respond
to new business requirements. Rele-
vant examples are the Cloud Stream
project and the introduction of the
reactive programming in next release
5.0. will follow these evolutions
closely to extract from them any rele-
vant improvements.

CMAS – Systems Consultants, Lda
Av. Dom João II, nº 44 C, 2.2
1990-095 Lisboa
T: +351 919531710
mail@cmas-systems.com
www.cmas-systems.com

