
CONTEXT
ARCHITECTURE

CAPABILITIES
ROADMAP

White Paper on

INDEX

03

04

05
06
07

08

09

10

11

12

WHITE PAPER

Page 1

INTRODUCTION

CONTEXT

ARCHITECTURE
PROCESSING ENGINE
DATA ACCESSIBILITY
PERSISTENCY
LOGGING/METRICS PLATFORM
METRICS
LOGGING
DISCOVERY SERVICE & CONFIGURATION SERVER
MONITORING
FRONTENDS
AUTHENTICATION SERVICE
TECHNOLOGIES

CAPABILITIES

ROADMAP

APPENDIX
PROCESSING ENGINE
JAVA 8
PIVOTAL SPRING FRAMEWORK
PIVOTAL RABBITMQ
RESOURCE MANAGEMENT
APACHE MESOS
DATA ACCESSIBILITY
APACHE IGNITE
PERSISTENCY
APACHE CASSANDRA

INTRODUCTION

In the past few years, the needs and
wishes of customers have grown
extensively, fuelled by technological
accomplishments and the evermore
present desire to be able to do
anything, anywhere, anytime. This has
in turn driven enterprises to come up
with ways to satisfy these needs, by
continuously engaging their customers
with innovative products and offers,
whilst being capable of quickly
adapting without having to constantly
change their infrastructures or plat-
forms to meet the demand. In order
to accomplish every tangible market
expectation, companies must be able
to change, transform and scale their
supporting activities and infrastruc-
tures, all for the sake of the customer

experience win-win place at the end
of track. Every aspect or dimension
supporting the business model, espe-
cially the IT infrastructure needs to be
flexible, scalable, agile, efficient and
have as little implementation time as
possible.
Companies seek adaptability, modu-
larity and the ability to account for
future changes. This proven fact has
been creating the need for integration
solutions, which can automate and
scale performance in their core busi-
ness support activities, diminishing
the huge and lengthily headache of
tying all the loose ends together with
every innovation and shifting from the
core legacy systems to automation and
scalability with little time to do it.

WHITE PAPER

Page 3

CONTEXT

Market focus is aimed at developing
new services and experiences, relying
on faster and deeper automation,
predictive analytics and security and
ever-deepening levels of integrations
and partnerships between multiple
players. In every market, across every
industry, both the producers/merchants
and consumer expectations are in
constant transformation. Consumers
increasingly demand higher and
quicker delivery, on-demand inter-
actions and results, while seemingly
non-coherently expecting lower and
more flexible costs and service fees.
From consumers to large corporations,
everyone seems to agree that Imme-
diacy is quickly turning into a basic
capability rather than a differentiation.
While the market demands it, market
regulators struggle to keep up with
it, and only the agilest and efficient
companies thrive.

Technology constantly outpaces itself
year after year, with new advances
being presented incessantly, and
changing the way people and enter-
prises do things. It continuously
grows in its presence everywhere,
effectively breeding a dependency

like never before. People don’t go
anywhere without their smartphones,
they operate simultaneously on their
tablets and laptops, while at the same
time enterprises rely on complex infra-
structures to operate and effectively
manage their core business. Little can
be achieved without technology, and
any company without a strong digital
presence is doomed to oblivion. With
so much technology in place, so many
different users and such diversity in
services and offers, the amount of data
and complexity of its management,
from a provider perspective, is ever
more obvious. The evolution has been
marked by moving from monolithic
applications, into modular ones; from
there, onto discrete domain-specific
systems interconnected by complex
integration architectures. The model
to do businesses nowadays have to
be flexible, adaptive, innovative and
modern, especially on the pressure put
into operating costs. From the startup
company to the large enterprise, the
key to prosperity seems to be able
to accommodate the markets ‘mood-
swings’, endure the constant shifts and
to compete being as light weighted as
possible.

Page 4

ARCHITECTURE

 Real-time Task Management
Framework was designed, from its
earlier stages, with the future in mind.
Following the old path made little
sense in a world marked by constant
evolution, and with the growing
certainty that today’s solutions will most
likely be outdated soon. With such
concerns in focus, different ways of
doing things were considered, where

scalability, fault-tolerance, reliability,
resilience and configurability where
key. What is true today will soon be
outdated and outpaced. The current
accepted amount of data will soon be
surpassed. More processing power, in
different geographies, through public
clouds or private data centers, must
be supported, with all the challenges
therein considered and handled.

Page 5

WHITE PAPER

Runtime Environment Services
API Gateway

Frontends

Authorization Service

Metrics Monitoring

Backend Services

Application Framework

Cloud Environment

Manager

Logging

Configuration Service

Processing Engine

Discovery Service InMemory Data Grid

Datastore
Backend Services

FTP/SFTP

Messaging

SOAP

TCP/UDP

REST API

Figure 1. Architecture Overview

The three core concepts behind :

1. PROCESSING ENGINE
The Processing Engine is the heart of
the solution. It is a package of
micro-services targeted at executing

flows of tasks across a variety of plat-
forms. Each flow can be fully config-
ured, allowing sequential or parallel

tasks to be executed. It features three
main classes of components: Receptor,
Orchestrator and Executor.

Page 6

1.1 RECEPTOR
The Receptor component is the main
entry point of any request, enabling its
initial processing, which includes tech-
nical validations as well as configurable
business rules to be applied to ascertain
the coherence of information, as well
as derive which flow is to be executed
based on the input data. Should all
steps be valid, an order is placed in the
queuing system and a reply is returned
to the calling platform. On the other
hand, should it fail, the calling platform
is informed of the failure for its correc-
tion and eventual resubmission. A
Receptor can provide several services
(endpoints) to be invoked, along with
multiple versions of each endpoint,
which are dynamically generated and
exposed based on user configuration.

It further supports multiple instances
running over various machines, each
with its own set of services for finer
granularity and control.

1.2 ORCHESTRATOR
For successfully accepted orders,
the Orchestrator component over-
sees the control of the flow of tasks
to be executed, from start to end
– successful or in error. It tracks the
evolution of each task by scheduling
it’s work within the available Executor
components, based on their capabili-
ties and the required work to be done.
The approach selected was of a state-
less, decentralized service, being able
to split the management of each flow
among all running instances. All inter-
actions between components occur

via messaging. The supporting broker
technology ensures persistence of
messages, high availability, confir-
mation upon delivery (at least once
delivery), fault tolerance, message
batching among many others. This
approach allows the engine to scale
vertically, by making use of multiple
cores per machine, and scale horizon-
tally, launching multiple instances in a
machine cluster.

1.3 EXECUTOR
The Executor component is respon-
sible for the actual running of the
work tasks within each workflow. This
component is designed for self-scaling
within its available resources, as well
as deployable in multiple instances for
load management and balancing. Each

W2Bill Real-time Environment

Persistence

Logging/Metrics Platform

Receptor Environment

InMemory Data Grid Message Broker

Receptor

Orchestrator Environment

Orchestrator

Client Execution Environment

Executor

Figure 2. Processing Engine Overview

component is dedicated to a work
domain, such as RDBMS interactions,
file system integrations, or other more
specialized features dependent on
customer requirements and constraints.

2. DATA ACCESSIBILITY
Given data is stored, it needs to
be retrieved for processing, and
then stored again when changed
(either updated or removed alto-
gether). Knowing beforehand that a
given customer may select several
approaches has implemented
a Data Grid solution to handle all
aspects of data manipulation. This
layer enables all interacting Services to
completely abstract on how and where
the data is handled, they just access it
in a performant and reliable way.

3. PERSISTENCY
It is immediately recognized that data
must be kept safely, consistently and
securely, to be used. It must also scale
easily, and have as little constraints in
it’s management as possible. Because
of this, there is no direct solution or
clear approach on which technology is
best. Standard RDBMS’s are tried-end-
true platforms, that provide a multitude
of capabilities, most people take for
granted, but have shortcomings in
either cost, scalability or performance.
More recent NoSQL solutions have
less wide-spread adoption in large
enterprises, but commonly are inher-
ently scalable and performant, at a
fraction of the cost. And then there are
ways closer to actual physical storage,
like HDFS, ZFS, and others. To handle
persistency has employed a
“choose any” approach. In other words,
whichever is best suited for a customer,
or a specific domain inside a customer,
the solution will support it.

Given data is stored, it needs to be
retrieved for processing, and then
stored again when changed (either
updated or removed altogether). Since
the approach with persistency has
been a “choose any”, and knowing
beforehand that a given customer may
select several approaches, has
implemented a Data Grid solution to
handle all aspects of data manipula-
tion. This layer enables all interacting
Services to completely abstract on
how and where the data is handled,
they just access it in a performant and
reliable way.

LOGGING/METRICS
PLATFORM

METRICS
All components are implemented
to produce execution metrics and
store them in a centralized repository
where the system performance can be
measured and monitored. With these
metrics, it is possible to know how long
an order takes to be processed, as well
as how long each component takes
to execute the required operation.
With these capabilities, it is possible
to detect anomalies in components’
instances by monitoring the execution
times of each system, along with other
relevant information necessary for
scheduling of performance enhancing
actions, bottleneck detection or scaling
decisions. Metrics are enriched with
contextual data. It is possible to know
the host where the component is
running, the number of available cores
and memory, which real-time group it
belongs, along with additional relevant
information.

LOGGING
In distributed deployments, compo-
nent instances will be spread across
several machines of a cluster. Each

instance will produce logs that must be
stored and grouped with the logs of all
system components to allow analysis
of the system behavior. All components
of Framework are prepared to
write application logs to a file – in the
local machine –, and to send a logging
message with additional data, allowing
users to correlate all logs for a specific
order or workflow execution. This
enables a clearer big picture of the
system. These logs are centralized in
an Elastic search index with a pre-de-
fined schema. It is possible to search
logs by an order id, a correlation id or
by a log message. Logs are published
asynchronously to the broker improving
system performance.

DISCOVERY SERVICE
& CONFIGURATION SERVER
Components instances can be started
in any available host of the cluster,
manually or automatically based on
workload. To be able to manage and
control all instances, a Service Registry
and a Configuration Server was imple-
mented. All components retrieve their
configuration from the central configu-
ration server, and must create a record
– with their IP address and HTTP port
– in the Service Registry. Each service
instance is responsible for registering
itself with the Service Registry during
start-up and unregistering on shut-
down.

MONITORING
Components’ instances are continu-
ously monitored using health check
endpoints provided by each of them,
and by metrics’ analysis. With it, it is
possible to act, in order to start and
stop instances, maintaining the desired
Service Level and the effective use of
resources of the running environment.

Page 7

WHITE PAPER

Page 8

FRONTENDS
 presents a unified GUI that

enables common operations to be
performed over the Platform, such as
diagnosis, tracing, log validation and
status checks. The chosen approach
allows each customer to have dedi-
cated screens or views, representing
relevant information to be displayed,
instead of a static screen showing
pre-defined data.

AUTHENTICATION SERVICE
To comply with the need of security
and validated service access,
embeds an authentication service
enabling the services to be used only
by properly authenticated users. With
this feature, all requests made to the
exposed services must be authenti-
cated through a central authentication

server – as provided by –,
ensuring only the services each user
has granted policies are accessed.
This server implements the OAuth 2.0
protocol and can authenticate users
in a relational database or an LDAP
server.

TECHNOLOGIES
The entire solution is based on the
technology stack presented below
in more detail. In any case, given the
architectural decisions made earlier
on, it becomes fully possible to opt
for specific solutions using different
technologies, if certain key integra-
tions aspects are met. As an example,
it is possible to deploy one Executor
component implemented in C/C++,
or Microsoft C#, or even Python. The
choice in the persistency stack can be

replaced by other NoSQL solutions
such as MongoDB, or even more tradi-
tional RDBMS’s like MySQL, Postgres or
Oracle. Across the entire solution, the
choice of technology has been focused
on its adequacy (for its given set of
responsibilities), as well as its proven
track-record, industry wide-spread
adoption, reliable enterprise-grade
support and evolution roadmap. With
the growing adoption of cloud-based
approaches instead of on premise,
certain facets of architecture, design
and underlying implementation were
considered to assure the solution was
prepared without the need of specific
customisation. By addressing these
concerns early, the selection of tech-
nologies was further refined, where
only the ones with appropriate levels
of compliance were left as eligible.

Cloud Environment

Hybrid Cloud

Figure 3. Packaging for multiple deployments

Packaging Private Data Center

CAPABILITIES

Page 9

A summarized list of What does
Real-time Task Management Frame-
work provide:

Concept of order, tracking each re-
quest from start to end
Concept of duplicated order through
configurable key fields
Concept of configurable and ver-
sioned services
Concept of service grouping for logi-
cal aggregation
Concept of service users and respec-
tive authentication
Cross-platform self, up and out scal-
ing
Request validation rules, from syntax
to business criteria
Task flows managed by orchestrators
and implement through executors
Order lifecycle with differentiated Or-
der status
Multiple integration languages: SOAP,
REST, etc.
Fault Tolerant design through com-
ponent clustering
No central point of failure
Logging with performance metrics

•

•

•

•

•

•

•

•

•

•

•

•
•

Component health checks and mon-
itoring
Data grid for high performance, ACID
data access and manipulation
Clustered, resilient and distributed
data persistency
Multiple data persistency solutions
support (RDBMS, NoSQL)
Distributed orchestrator approach
Standard Executors for common
operations, with capability for cli-
ent-specific enhancements
Flow Pausing and Resume
Alternative flow execution for stand-
ard flow failure scenarios
Inter-component communication
through messaging for at least once
delivery assurance

•

•

•

•

•
•

•
•

•

WHITE PAPER

Page 10

ROADMAP

Fully aware the product of today
isn’t the product of tomorrow, since
the needs and technology of today
will surely be replaced in the future,
the solution has a constantly
evolving roadmap of features. These
new capabilities will come from the

new experience gathered from our
customers, as well as their insight,
advice and suggestions. There is
no aim in having customer-specific
branches stopped in time over each
deployment, but assure a recurring
evolution targeted at providing new

and better ways to support technology
and business.
By constantly investigating on what is
happening and about to happen, as
well as converging experiences across

markets, customers and mindsets, we
envision the path of improvement to be
made available. Partnership with our
clients is key in the forming of this vision
and the definition of the roadmap.

Figure 4. Architecture Overview

Continuous Improvement Feature Build Deployment & Evaluation

Business Requirement Legal Constraint New Capability Technology Evolution

Competitors

Industries

Customers

Markets

Trends

Products

Test

Plan

Build

Design

On PremiseCloud

APPENDIX
Some technical insights
on Realtime

Page 11

PROCESSING ENGINE

JAVA 8
 Realtime is built using the latest

version of Java language. It enables
to take advantage of all new features
and performance improvements intro-
duced with version 8. Java has been
selected as the reference language
given its wide industry adoption, the
simplicity to deploy on multiple plat-
forms, it’s code portability. Java has a
widespread number of open source
plugins and frameworks, an extremely
active developer community, and an
extensive evolution roadmap as well
as a support group.

PIVOTAL SPRING
FRAMEWORK
Pivotal Spring Framework is an open
source framework that supports the
development of Java applications,
by providing help with infrastructure
needs and supplying a consistent
programming model over different
technologies.
It has been widely used throughout the
Java development industry, as an alter-
native to the Enterprise Java Beans
model.

Pivotal, and particularly it’s Spring
team, are always planning the future
and driving the framework to respond
to new business requirements. Rele-
vant examples are the Cloud Stream
project and the introduction of the
reactive programming in next release
5.0. will follow these evolutions
closely to extract from them any rele-
vant improvements.

PIVOTAL RABBITMQ
RabbitMQ is an open source message
broker managed by Pivotal and is well
supported by the Spring Framework.
It features reliability, flexible routing,
clustering and highly available queues.
It integrates with multiple programming
languages, making it easy to integrate
the messaging pattern with different
application, thus enabling to
quickly and seamlessly incorporate
specific client modules that are devel-
oped in languages other than the core

 implementation language.
RabbitMQ is a broker capable of
supporting multiple protocols, which
further enables the integration capa-
bilities of , not restricting its
messaging approach to one specific
protocol.

WHITE PAPER

Page 12

RESOURCE MANAGEMENT

APACHE MESOS
 is a naturally distributed system.

Any of its components and respective
instances can be executed in multiple
machines, thus contributing for better
performance through horizontal scala-
bility, as well as avoiding central points
of failure, by relying on clustering and
fault-tolerance techniques.
The implementation is designed to
use not only common virtualization of
machines, but also containerization ap-
proaches, such as Docker or Kubernetes.
The distribution and resource manage-
ment are thus a concern that has been
properly addressed using Apache
Mesos, which features centralized han-
dling for deployment and scaling of

’s components in any sort of in-
stallation, from on-premise to cloud or
a mix of both.

DATA ACCESSIBILITY

APACHE IGNITE
Apache Ignite is an In-memory Data
Fabric that provides high-performance
data, compute and service grids. It sup-
ports fully ACID-compliant distributed
transactions, ensuring consistency
across all data and supporting stand-
ard SQL syntax to query the objects
stored in the data grid. Accessing this
data grid is possible through multiple
programming languages.

Another relevant feature is the ad-
vanced clustering capabilities enabling

scalability, fault-tolerance and high per-
formance requirements.
Currently, uses the data grid as
a layer to interact with the persistency
solution, with read-through or write-
through approaches. The effective
writing is executed in an asynchronous
manner, to expedite performance.

PERSISTENCY

APACHE CASSANDRA
The choice of Apache Cassandra for
storage was based on its multitude of
capabilities, particularly:
• Decentralized nature, avoiding single
points of failure or network-based bot-
tlenecks
• Fault Tolerance, through its data repli-
cation across nodes and data centers,
together with the capability of failed
node replacement without downtime
• Scalability, by use of “nearly infinite”
multiple nodes to support processing
and storage growth
• Elasticity, by relying on its nodes in-
crease for read/write throughput
• Professional support and proven use
on global enterprises (CERN, eBay,
GitHub, Apple, Netflix to name a few)

The Framework relies on
Apache Cassandra solution to store its
information across its components. The
use is indirect, however, as the layer of
accessibility is performed via Data Fab-
ric Apache Ignite. It is the responsibility
of this layer to effectively communicate
with Apache Cassandra, for effective
storage (write) and reading of data.

Av. Dom João II, nº 44 C, 2.2 • 1990–095 Lisboa, Portugal
T: +351 919531710 • mail@cmas-systems.com • www.cmas-systems.com

CMAS – Systems Consultants, Lda
Av. Dom João II, nº 44 C, 2.2
1990-095 Lisboa
T: +351 919531710
mail@cmas-systems.com
www.cmas-systems.com

